RSA Digital Signature Standards

Burt Kaliski, RSA Laboratories 23rd National Information Systems Security Conference, October 16–19, 2000

Outline

- I. Background
- II. Forgery and provable security
- III. Contemporary signature schemes
- IV. Standards strategy

Part I: Background

General Model

- A signature scheme consists of three (or more) related operations
- Key pair generation produces a public/private key pair
- Signature operation produces a signature for a message with a private key
- Verification operation checks a signature with a public key

Types of Signature Scheme

- Appendix: message transmitted with signature
- Total message recovery: message recoverable from signature
- Partial message recovery: part of message recoverable from signature, part transmitted

Trapdoor One-Way Functions

 A one-way function f(x) is easy to compute but hard to invert:

```
easy: x \rightarrow f(x)
hard: f(x) \rightarrow x
```

• A *trapdoor* one-way function has trapdoor information f^1 that makes it easy to invert:

```
- easy: f(x), f^1 \to x = f^1(f(x))
```

 Many but not all signature schemes are based on trapdoor OWFs

RSA Trapdoor OWF

The RSA function is

$$f(x) = x^e \mod n$$

where n = pq, p and q are large random primes, and e is relatively prime to p-1 and q-1

- This function is conjectured to be a trapdoor OWF
- Trapdoor is

$$f^1(x) = x^d \mod n$$

where $d = e^{-1} \mod \text{lcm}(p-1,q-1)$

Embedding Operations

- An embedding operation $\mu(\emph{M})$ maps from message strings to "message representatives," which can be input to f^1
 - e.g., a hash function with padding
 - may be randomized
- Inverse operation checks whether a message representative is correct
 - in scheme with message recovery, also recovers message part
- Current RSA signature schemes differ primarily in terms of the embedding operation

Scheme with Appendix

 Signature generation embeds message, applies trapdoor:

$$-s=f^1(\mu(M))$$

 Signature verification applies OWF, checks against message:

$$- \mu^{-1}(f(s), M)$$
 valid?

Scheme with Message Recovery

 Signature generation embeds message, applies trapdoor:

$$-s = f^{1}(\mu(M_{r}, M_{nr}))$$

• Signature verification applies OWF, checks against M_{nr} , recovers M_r :

$$-M_{\rm r}=\mu^{-1}(f(s),M_{\rm nr})$$

Embedding Properties

- Embedding operation should have similar properties to a hash function:
 - one-way: for random x, hard to find M s.t. $\mu(M) = x$
 - collision-resistant: hard to find M_1 , M_2 s.t. $\mu(M_1) = \mu(M_2)$
- May also identify underlying algorithms
 - but if so, must be done with care
- Should also interact well with trapdoor function
 - ideally, mapping should appear "random"

Multiplicative Properties of RSA

 RSA function is a multiplicative homomorphism: for all x, y,

$$f(xy \bmod n) = f(x) f(y) \bmod n$$
$$f^{1}(xy \bmod n) = f^{1}(x) f^{1}(y) \bmod n$$

More generally:

$$f^1(\prod x_i \bmod n) = \prod (f^1(x_i)) \bmod n$$

 Property is exploited in most forgery attacks on RSA signatures, but also enhances recent security proofs

Part II: Forgery and Provable Security

Signature Forgery

- A forgery is a signature computed without the signer's private key
- Forgery attacks may involve interaction with the signer: a chosen-message attack
- Forgery may produce a signature for a specified message, or the message may be output with its signature (existential forgery)

Multiplicative Forgery

Based on the multiplicative properties of the RSA function, if

$$\mu(M) = \prod \mu(M_i)^{\alpha} \mod n$$

then

$$\sigma(M) = \prod \sigma(M_i)^{n} \alpha_i \bmod n$$

• Signature for M can thus be forged given the signatures for $M_1, ..., M_l$ under a chosen-message attack

Small Primes Method

- Suppose μ(M) and μ(M₁), ..., μ(M_I) can be factored into small primes
 - Desmedt-Odlyzko (1986); Rivest (1991 in PKCS #1)
- Then the exponents α_i can be determined by relationships among the prime factorizations
- Requires many messages if μ maps to large integers, but effective if μ maps to small integers
- Limited applicability to current schemes

Recent Generalization

- Consider μ(M), μ(M₁), ..., μ(M_I) mod n, and also allow a fixed factor
 - Coron-Naccache-Stern (1999)
- Effective if μ maps to small integers mod n times a fixed factor
- Broader applicability to current schemes:
 - ISO 9796-2 [CNS99]
 - ISO 9796-1 [Coppersmith-Halevi-Jutla (1999)]
 - recovery of private key for Rabin-Williams variants[Joye-Quisquater (1999)]

Integer Relations Method

What if the equation

$$\mu(M) = f(t) \prod \mu(M_i)^{\wedge} \alpha_i$$

could be solved without factoring?

- Effective for weak μ
- ISO 9796-1 broken with *three* chosen messages [Grieu (1999)]

Reduction Proofs

- A reduction proof shows that inverting the function f "reduces" to signature forgery: given a forgery algorithm F, one can construct an inversion algorithm I
- Provable security: inversion hard → forgery hard
- "Tight" proof closely relates hardness of problems

Random Oracle Model

- In the random oracle model, certain functions are considered "black boxes": forgery algorithm cannot look inside
 - e.g., hash functions
- Model enables reduction proofs for generic forgery algorithms — inversion algorithm hides value to be inverted in oracle outputs
- Multiplicative properties of RSA can enhance the proof

Part III: Contemporary Signature Schemes

Overview

- Several popular approaches to RSA signatures
- Approaches differ primarily in the mapping μ
- Some differences also in key generation
- Some also support Rabin-Williams (even exponent) signatures

 There are many other signature schemes based on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2); focus here is on those involving the RSA function

Schemes with Appendix

- Basic scheme
- ANSI X9.31
- PKCS #1 v1.5
- Bellare-Rogaway FDH
- Bellare-Rogaway PSS
- IEEE P1363a version of PSS

Basic Scheme

- $\mu(M) = \text{Hash}(M)$
- Pedagogical design
- Insecure against multiplicative forgery for typical hash sizes
- (Hopefully) not widely deployed

ANSI X9.31

(Digital Signatures Using Reversible Public-Key Cryptography for the Financial Services Industry, 1998)

- $\mu(M) = 6b \ bb \dots bb \ ba \ || \ Hash(M) \ || \ 3x \ cc$ where x = 3 for SHA-1, 1 for RIPEMD-160
- Ad hoc design
 - cc octet for RW support
- Resistant to multiplicative forgery
 - some moduli are more at risk, but still out of range
- Widely standardized
 - IEEE 1363, ISO/IEC 14888-3
 - US NIST FIPS 186-1

ANSI X9.31 requires "strong primes"

PKCS #1 v1.5

(RSA Encryption Standard, 1991)

- $\mu(M) = 00 \ 01 \ \text{ff} \ \dots \ \text{ff} \ 00 \ || \ \text{HashAlgID} \ || \ \text{Hash}(M)$
- Ad hoc design
- Resistant to multiplicative forgery
 - moduli near 2^k are more at risk, but still out of range
- Widely deployed
 - SSL certificates
 - S/MIME
- Included in IEEE P1363a; PKCS #1 v2.0 continues to support it

ANSI X9.31 vs. PKCS #1 v1.5

- Both are deterministic
- Both include a hash function identifier
- Both are ad hoc designs
 - both resist [CNS99]/[CHJ99] attacks
- Both support RSA and RW primitives
 - see IEEE P1363a contribution on PKCS #1 signatures for discussion
- No patents have been reported to IEEE P1363 or ANSI X9.31 for these mappings

Bellare-Rogaway FDH

(Full Domain Hashing, ACM CCCS '93)

- μ(M) = Full-Length-Hash(m)
- Provably secure design
 - resists any attack where hash function is considered a black box, provided that RSA is hard to invert
- Variant included in IEEE P1363a, PKCS #1 v2.1 draft

Bellare-Rogaway PSS

(Probabilistic Signature Scheme, Eurocrypt '96)

- μ(M) ≈ H || G(H) ⊕ salt
 where H = Hash(salt, M), salt is random, and G is a mask generation function
- Provably secure design
- Variant included in IEEE P1363a, PKCS #1 v2.1 draft

FDH vs. PSS

- FDH is deterministic, PSS is probabilistic
- Both are provably secure designs
 - same paradigm as Optimal Asymmetric Encryption Padding (OAEP)
- PSS has tighter security proof, is less dependent on security of hash function
- PSS-R variant supports message recovery, partial message recovery
- PSS is patent pending (but generously licensed)

IEEE P1363a Version of PSS

- μ(M) = G(H) ⊕ [00 ... 01 || salt] || H || bc
 where H≈ Hash(salt, Hash(M)), salt is random, and G is a mask generation function
- Salt combined with Hash(M) rather than M for practical and security reasons:
 - "single-pass" processing
 - provable security if Hash(M) outside crypto module
 - protection against fault-analysis attacks
- Salt can be omitted for FDH-like scheme

Schemes with Message Recovery

- Basic scheme
- ISO/IEC 9796-1
- ISO/IEC 9796-2
- Bellare-Rogaway PSS-R
- IEEE P1363a version of PSS-R

Basic Scheme

- $\mu(M_r) = M_r$
- Another pedagogical design ("textbook RSA")
- Insecure against various forgeries, including existential forgery
 - attacker can select signature s then "recover" $M_r = f(s)$
- Again, hopefully not widely deployed

ISO/IEC 9796-1

(Digital Signature Scheme Giving Message Recovery, 1991)

•
$$\mu(M_r) = \pi^*(m_{l-1}) \pi'(m_{l-2}) m_{l-1} m_{l-2}$$

 $\pi(m_{l-3}) \pi(m_{l-4}) m_{l-3} m_{l-4} \dots$
 $\pi(m_3) \pi(m_2) m_3 m_2$
 $\pi(m_1) \pi(m_0) m_0 6$

where m_i is the *i*th nibble of M_r and π^* , π' and π are permutations

- Ad hoc design with significant rationale
- Not resistant to multiplicative forgery [CHJ99]
 [Grieu 1999]
 - may still be appropriate if applied to a hash value

Moderately standardized

ISO/IEC 9796-2

(Digital Signature Scheme Giving Message Recovery — Mechanisms Using a Hash Function, 1997)

- $\mu(M_r, M_{nr}) \approx 6a || M_r || H || bc$
- $\mu(M_r) = 4b \ bb \dots bb \ ba || M_r || H || bc$ where $H = \text{Hash} (M_r, M_{nr})$ or $\text{Hash} (M_r)$
 - (assumes modulus length is multiple of 8)
 - general format allows hash algorithm ID
- Ad hoc design
- Not resistant to multiplicative forgery if hash value is 64 bits or less [CNS99]
 - may still be appropriate for larger hash values

Newly standardized

Bellare-Rogaway PSS-R

(Probabilistic Signature Scheme with Recovery, 1996)

- $\mu(M_r, M_{nr}) \approx H \parallel G(H) \oplus [salt \parallel M_r]$ where $H = \text{Hash}(salt, M_r, M_{nr})$, salt is random, and G is a mask generation function
- Provably secure design
- Variant included in IEEE P1363a, draft revision of ISO/IEC 9796-2

IEEE P1363a Version of PSS-R

- $\mu(M_r, M_{nr}) = G(H) \oplus [00 \dots 01 || M_r || salt] || H || bc$ where $H \approx \text{Hash}(salt, M_r, \text{Hash}(M_{nr}))$, salt is random, and G is a mask generation function
- Extension of PSS variant
 - PSS variant is special case where M_r is null

Part IV: Standards Strategy

Standards vs. Theory vs. Practice

- ANSI X9.31 is widely standardized
- PSS is widely considered secure
- PKCS #1 v1.5 is widely deployed

- How to harmonize signature schemes?
 - (primary question for signature schemes with appendix; related question for message recovery)

Challenges

- Infrastructure changes take time
 - particularly on the user side
- ANSI X9.31 is more than just another encoding method, also specifies "strong primes"
 - a controversial topic
- Many communities involved
 - formal standards bodies, IETF, browser vendors, certificate authorities

Prudent Security

- What if a weakness were found in ANSI X9.31 or PKCS #1 v1.5 signatures?
 - no proof of security, though designs are well motivated, supported by analysis
 - would be surprising but so were vulnerabilities in ISO/IEC 9796-1,-2
- PSS embodies "best practices," prudent to improve over time

Proposed Strategy

- Short term (1-2 years): Support both PKCS #1 v1.5 and ANSI X9.31 signatures for interoperability
 - e.g., in IETF profiles, FIPS validation
 - FIPS 186-2 schedule allows PKCS #1 v1.5 for an 18month transition period, FPKI TWG is requesting a further extension
- Long term (2-5 years): Move toward PSS
 - upgrade in due course e.g., with AES algorithm, new hash functions
 - separate assurance requirements from interoperability
 - e.g., key sizes, key protection, "strong primes"

Standards Work

- PSS, PSS-R standardization work in progress in various forums:
 - IEEE P1363a
 - PKCS #1 v2.1
 - ISO/IEC 9796-2 revision
- Coordination ongoing, ballot target Spring 2001
- Promotion in other forums planned
 - ANSI X9.31
 - FIPS
 - IETF

Conclusions

- Several signature schemes based on RSA algorithm
 - varying attributes: standards, theory, practice
- Recent forgery results on certain schemes, security proofs on others
- PSS a prudent choice for long-term security, harmonization of standards

